欢迎访问林圣彩实验室主页

     近年来,林圣彩教授以细胞代谢稳态调控为研究核心,针对细胞对营养物质与能量的感知机制以及代谢紊乱相关疾病的发生发展的分子机制进行研究,并取得了一系列原创性成果:揭示了生长因子缺乏诱导细胞启动自噬的分子机制(Science, 2012),及其对糖代谢流的调控(Molecular Cell, 2016);发现和鉴定了细胞感应葡萄糖缺乏的溶酶体途径和葡萄糖感受器,及其激活AMPK的方式,并打破了传统的“AMPK的激活仅依赖于AMP浓度的变化的认知(Cell Metabolism, 2013, 2014; Nature, 2017)此外,还揭示了自己团队发现的AIDA基因在哺乳动物中作为脂肪吸收、合成和储存相关的浪费基因的生理功能、及其蛋白质通过内质网降解(ERAD)途径控制膳食脂肪吸收过程的重要功能(Cell Metabolism, 2018),和甘油磷酸酶lipin1在甘油三酯合成中的关键作用(Nature Communications2018)。他与DG Hardie作为共同通讯作者在发表了有关AMPK激活机制与功能综述文章(Cell Metabolism2018),和有关碳水化合物在抗氧化方面的作用的评论文章(Cell Metabolism2018)。林圣彩教授早前的成就还体现在解释了两种侏儒症的发生机制 (Nature, 1991, 1993),以及AXIN作为架构蛋白质介导抑癌因子p53等的激活机制(EMBO, 2005; Nature Cell Biology, 2009)。迄今为止发表SCI论文近100篇,其中多篇发表在NatureScienceCell MetabolismNature Cell BiologyMolecular Cell等国际著名杂志上,被引用9000余次。  

 

近期代表性文章

1.   Gonzalez A, Hall MD, Lin SC, Hardie DG*. AMPK and TOR: The yin and yang of cellular nutrient sensing and growth control. Cell Metabolism 2020;31 (3): 472-492. (Review)

2.     Zhang CS, Hardie DG*, Lin SC*. Glucose starvation blocks translation at multiple levels. Cell Metabolism 2020; 31 (2): 217-218.

3.    Li M#, Zhang CS#, Zong Y#, Feng JW, Ma T, Hu M, Lin Z, Li X, Xie C, Wu Y, Jiang D, Li Y, Zhang C, Tian X, Wang W, Yang Y, Chen J, Cui J, Wu YQ, Chen X, Liu QF, Wu J, Lin SY, Ye Z, Liu Y, Piao HL, Yu L, Zhou Z, Xie XS, Hardie DG, Lin SC*. Transient receptor potential channels are essential for glucose sensing by aldolase and AMPK. Cell Metabolism 2019; 30 (3): 508–524.

4.    Zong Y#, Zhang CS#, Li M#, Wang W#, Wang Z, Hawley SA, Ma T, Feng JW, Tian X, Qi Q, Wu YQ, Zhang C, Ye Z, Lin SY, Piao HL, Hardie DG, Lin SC*.Hierarchical activation of compartmentalized pools of AMPK depends on severity of nutrient or energy stress. Cell Research 2019; 29 (6): 460-473.

5.     Lin SY, Zhang CS, Lin SC*. Carbohydrates: Not ALL that Bad? Cell Metabolism 2018; 28 (5): 671-672.

6.   Cai WF, Zhang C, Wu YQ, Zhuang G, Ye Z, Zhang CS*, Lin SC*. Glutaminase GLS1 senses glutamine in a nonenzymatic manner triggering mitochondrial fusion. Cell Research 2018; 28 (8): 865–867.

7.    Lin SC*, Hardie DG*. AMPK: Sensing Glucose as well as Cellular Energy Status. Cell Metabolism 2018; 27 (2): 299-313. (Invited Review)

8.    Luo H#, Jiang M#, Lian G, Liu Q, Shi M, Li TY, Song L, Ye J, He Y, Yao L, Zhang C, Lin ZZ, Zhang CS, Zhao TJ, Jia WP, Li P, Lin SY*, Lin SC*. Aida Mediates ERAD to Selectively Downregulate Triacylglycerol Synthesis Enzymes and Prevent Obesity. Cell Metabolism 2018; 27 (4): 843-853.

9.    Li TY#, Song L#, Sun Y#, Li J, Yi C, Lam SM, Xu D, Zhou L, Li X, Yang Y, Zhang CS, Xie C, Huang X, Shui G, Lin SY, Reue K, Lin SC*. Tip60-mediated lipin 1 acetylation and ER translocation determine triacylglycerol synthesis rate. NatureCommunications 2018; 9 (1): 1916.

10.   Hardie DG*, Lin SC. AMP-activated protein kinase – not just an energy sensor [version 1; referees: 3 approved]. F1000Research 2017; 6 (F1000 Faculty Rev): 1724. (Review)

11.   Zhang CS#, Hawley SA#, Zong Y#, Li M#, Wang Z, Gray A, Ma T, Cui J, Feng JW, Zhu M, Wu YQ, Li TY, Ye Z, Lin SY, Yin H, Piao HL, Hardie DG*, Lin SC*. Fructose-1,6-bisphosphate and aldolase mediate glucose sensing by AMPK. Nature 2017; 548 (7665): 112-116.

12. Zhang CS, Lin SC*. AMPK Promotes Mitophagy through Facilitating Mitochondrial Fission. Cell Metabolism 2016; 23 (3): 399-341.

13.  Zhang CS#, Li M#, Ma T#, Zong Y, Cui J, Feng JW, Wu YQ, Lin SY, Lin SC*. Metformin activates AMPK through the lysosomal pathway. Cell Metabolism 2016; 24 (4): 521-522.

14.   Li TY, Liang Y, Sun Y, Liang Y, Liu Q, Shi YZ, Zhang SC, Zhang CX, Song LT, Zhang P, Zhang XZ, Li XT, Chen T, Huang HY, He XD, Wang Y, Wu YQ, Chen SX, Jiang M, Chen CH, Xie CC, Yang JY, Lin Y, Zhao SM, Ye ZY, Lin SY, Chiu DT, Lin SC*. ULK1/2 Constitute a Bifurcate Node Controlling Glucose Metabolic Fluxes in addition to Autophagy. Molecular Cell 2016; 62 (3): 359-370.

15.  Zhang CS#, Liu Q#, Li M#, Lin SY#, Peng Y, Wu D, Li TY, Fu Q, Jia W, Wang X, Ma T, Zong Y, Cui J, Pu C, Lian G, Guo H, Ye Z, Lin SC*. RHOBTB3 promotes proteasomal degradation of HIF1alpha through facilitating hydroxylation and suppresses the Warburg effect. Cell Research 2015; 25 (9): 1025-1042.

16.  Zhang CS#, Jiang B#, Li M#, Zhu M, Peng Y, Zhang YL, Wu YQ, Li TY, Liang Y, Lu Z, Lian G, Liu Q, Guo H, Yin Z, Ye Z, Han J, Wu JW, Yin H, Lin SY, Lin SC*. The Lysosomal v-ATPase-Ragulator Complex is a common activator for AMPK and mTORC1, acting as a switch between catabolism and anabolism. Cell Metabolism 2014; 20 (3): 526-540.

17.  Zhang YL#, Guo H#, Zhang CS#, Lin SY, Yin Z, Peng Y, Luo H, Shi Y, Lian G, Zhang C, Li M, Ye Z, Ye J, Han J, Li P, Wu JW, Lin SC*. AMP as a low energy charge signal autonomously initiates assembly of AXIN-AMPK-LKB1 complex for AMPK activation. Cell Metabolism 2013; 18 (4): 546-555.

18. Guo HL#, Zhang C#, Liu Q#, Li Q, Lian G, Wu D, Li X, Zhang W, Shen Y, Ye Z, Lin SY, Lin SC*. The Axin/TNKS complex interacts with KIF3A and is required for insulin-stimulated GLUT4 translocation. Cell Research 2012; 22 (8): 1246-1257.

19.  Lin SY#, Li TY#, Liu Q, Zhang C, Li X, Chen Y, Zhang SM, Lian G, Liu Q, Ruan K, Wang Z, Zhang CS, Chien KY, Wu J, Li Q, Han J, Lin SC*. GSK3-TIP60-ULK1 signaling pathway links growth factor deprivation to autophagy. Science 2012; 336 (6080): 477-481.

20.  Li Q#, Lin SY#, Wang X#, Lian G, Lu Z, Guo H, Ruan K, Wang Y, Ye Z, Han J, Lin SC*. Axin determines cell fate by controlling the p53 activation threshold after DNA damage. Nature Cell Biology 2009; 11 (9): 1128-1135.